Safety Analysis Methods for Complex Systems in Aviation

Each new concept of operation and equipment generation in aviation becomes more automated, integrated and interconnected. In the case of Unmanned Aircraft Systems (UAS), this evolution allows drastically decreasing aircraft weight and operational cost, but these benefits are also realized in highly automated manned aircraft and ground Air Traffic Control (ATC) systems. The downside of these advances is overwhelmingly more complex software and hardware, making it harder to identify potential failure paths. Although there are mandatory certification processes based on broadly accepted standards, such as ARP4754 and its family, ESARR 4 and others, these standards do not allow proof or disproof of safety of disruptive technology changes, such as GBAS Precision Approaches, Autonomous UAS, aircraft self-separation and others. In order to leverage the introduction of such concepts, it is necessary to develop solid knowledge on the foundations of safety in complex systems and use this knowledge to elaborate sound demonstrations of either safety or unsafety of new system designs. These demonstrations at early design stages will help reducing costs both on development of new technology as well as reducing the risk of such technology causing accidents when in use. This paper presents some safety analysis methods which are not in the industry standards but which we identify as having benefits for analyzing safety of advanced technological concepts in aviation.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here