Sampling Using Neural Networks for colorizing the grayscale images

27 Dec 2018  ·  Wonbong Jang ·

The main idea of this paper is to explore the possibilities of generating samples from the neural networks, mostly focusing on the colorization of the grey-scale images. I will compare the existing methods for colorization and explore the possibilities of using new generative modeling to the task of colorization... The contributions of this paper are to compare the existing structures with similar generating structures(Decoders) and to apply the novel structures including Conditional VAE(CVAE), Conditional Wasserstein GAN with Gradient Penalty(CWGAN-GP), CWGAN-GP with L1 reconstruction loss, Adversarial Generative Encoders(AGE) and Introspective VAE(IVAE). I trained these models using CIFAR-10 images. To measure the performance, I use Inception Score(IS) which measures how distinctive each image is and how diverse overall samples are as well as human eyes for CIFAR-10 images. It turns out that CVAE with L1 reconstruction loss and IVAE achieve the highest score in IS. CWGAN-GP with L1 tends to learn faster than CWGAN-GP, but IS does not increase from CWGAN-GP. CWGAN-GP tends to generate more diverse images than other models using reconstruction loss. Also, I figured out that the proper regularization plays a vital role in generative modeling. read more

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.