Scalable Ensemble-based Detection Method against Adversarial Attacks for speaker verification

14 Dec 2023  ·  Haibin Wu, Heng-Cheng Kuo, Yu Tsao, Hung-Yi Lee ·

Automatic speaker verification (ASV) is highly susceptible to adversarial attacks. Purification modules are usually adopted as a pre-processing to mitigate adversarial noise. However, they are commonly implemented across diverse experimental settings, rendering direct comparisons challenging. This paper comprehensively compares mainstream purification techniques in a unified framework. We find these methods often face a trade-off between user experience and security, as they struggle to simultaneously maintain genuine sample performance and reduce adversarial perturbations. To address this challenge, some efforts have extended purification modules to encompass detection capabilities, aiming to alleviate the trade-off. However, advanced purification modules will always come into the stage to surpass previous detection method. As a result, we further propose an easy-to-follow ensemble approach that integrates advanced purification modules for detection, achieving state-of-the-art (SOTA) performance in countering adversarial noise. Our ensemble method has great potential due to its compatibility with future advanced purification techniques.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here