Secure Byzantine-Robust Distributed Learning via Clustering

6 Oct 2021  ·  Raj Kiriti Velicheti, Derek Xia, Oluwasanmi Koyejo ·

Federated learning systems that jointly preserve Byzantine robustness and privacy have remained an open problem. Robust aggregation, the standard defense for Byzantine attacks, generally requires server access to individual updates or nonlinear computation -- thus is incompatible with privacy-preserving methods such as secure aggregation via multiparty computation. To this end, we propose SHARE (Secure Hierarchical Robust Aggregation), a distributed learning framework designed to cryptographically preserve client update privacy and robustness to Byzantine adversaries simultaneously. The key idea is to incorporate secure averaging among randomly clustered clients before filtering malicious updates through robust aggregation. Experiments show that SHARE has similar robustness guarantees as existing techniques while enhancing privacy.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here