SecureBoost+ : A High Performance Gradient Boosting Tree Framework for Large Scale Vertical Federated Learning

21 Oct 2021  ·  Weijing Chen, Guoqiang Ma, Tao Fan, Yan Kang, Qian Xu, Qiang Yang ·

Gradient boosting decision tree (GBDT) is a widely used ensemble algorithm in the industry. Its vertical federated learning version, SecureBoost, is one of the most popular algorithms used in cross-silo privacy-preserving modeling... As the area of privacy computation thrives in recent years, demands for large-scale and high-performance federated learning have grown dramatically in real-world applications. In this paper, to fulfill these requirements, we propose SecureBoost+ that is both novel and improved from the prior work SecureBoost. SecureBoost+ integrates several ciphertext calculation optimizations and engineering optimizations. The experimental results demonstrate that Secureboost+ has significant performance improvements on large and high dimensional data sets compared to SecureBoost. It makes effective and efficient large-scale vertical federated learning possible. read more

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here