Self-Tuning Hamiltonian Monte Carlo for Accelerated Sampling

24 Sep 2023  ·  Henrik Christiansen, Federico Errica, Francesco Alesiani ·

The performance of Hamiltonian Monte Carlo simulations crucially depends on both the integration timestep and the number of integration steps. We present an adaptive general-purpose framework to automatically tune such parameters, based on a local loss function which promotes the fast exploration of phase-space. We show that a good correspondence between loss and autocorrelation time can be established, allowing for gradient-based optimization using a fully-differentiable set-up. The loss is constructed in such a way that it also allows for gradient-driven learning of a distribution over the number of integration steps. Our approach is demonstrated for the one-dimensional harmonic oscillator and alanine dipeptide, a small protein common as a test case for simulation methods. Through the application to the harmonic oscillator, we highlight the importance of not using a fixed timestep to avoid a rugged loss surface with many local minima, otherwise trapping the optimization. In the case of alanine dipeptide, by tuning the only free parameter of our loss definition, we find a good correspondence between it and the autocorrelation times, resulting in a $>100$ fold speed up in optimization of simulation parameters compared to a grid-search. For this system, we also extend the integrator to allow for atom-dependent timesteps, providing a further reduction of $25\%$ in autocorrelation times.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods