Semantic Alignment with Calibrated Similarity for Multilingual Sentence Embedding

Findings (EMNLP) 2021  ·  Jiyeon Ham, Eun-Sol Kim ·

Measuring the similarity score between a pair of sentences in different languages is the essential requisite for multilingual sentence embedding methods. Predicting the similarity score consists of two sub-tasks, which are monolingual similarity evaluation and multilingual sentence retrieval. However, conventional methods have mainly tackled only one of the sub-tasks and therefore showed biased performances. In this paper, we suggest a novel and strong method for multilingual sentence embedding, which shows performance improvement on both sub-tasks, consequently resulting in robust predictions of multilingual similarity scores. The suggested method consists of two parts: to learn semantic similarity of sentences in the pivot language and then to extend the learned semantic structure to different languages. To align semantic structures across different languages, we introduce a teacher-student network. The teacher network distills the knowledge of the pivot language to different languages of the student network. During the distillation, the parameters of the teacher network are updated with the slow-moving average. Together with the distillation and the parameter updating, the semantic structure of the student network can be directly aligned across different languages while preserving the ability to measure the semantic similarity. Thus, the multilingual training method drives performance improvement on multilingual similarity evaluation. The suggested model achieves the state-of-the-art performance on extended STS 2017 multilingual similarity evaluation as well as two sub-tasks, which are extended STS 2017 monolingual similarity evaluation and Tatoeba multilingual retrieval in 14 languages.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here