Semantic Stereo Matching With Pyramid Cost Volumes

ICCV 2019 Zhenyao Wu Xinyi Wu Xiaoping Zhang Song Wang Lili Ju

The accuracy of stereo matching has been greatly improved by using deep learning with convolutional neural networks. To further capture the details of disparity maps, in this paper, we propose a novel semantic stereo network named SSPCV-Net, which includes newly designed pyramid cost volumes for describing semantic and spatial information on multiple levels... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet