Sensor Fault Detection and Isolation in Autonomous Nonlinear Systems Using Neural Network-Based Observers

18 Apr 2023  ·  John Cao, Muhammad Umar B. Niazi, Matthieu Barreau, Karl Henrik Johansson ·

This paper presents a novel observer-based approach to detect and isolate faulty sensors in nonlinear systems. The proposed sensor fault detection and isolation (s-FDI) method applies to a general class of nonlinear systems. Our focus is on s-FDI for two types of faults: complete failure and sensor degradation. The key aspect of this approach lies in the utilization of a neural network-based Kazantzis-Kravaris/Luenberger (KKL) observer. The neural network is trained to learn the dynamics of the observer, enabling accurate output predictions of the system. Sensor faults are detected by comparing the actual output measurements with the predicted values. If the difference surpasses a theoretical threshold, a sensor fault is detected. To identify and isolate which sensor is faulty, we compare the numerical difference of each sensor meassurement with an empirically derived threshold. We derive both theoretical and empirical thresholds for detection and isolation, respectively. Notably, the proposed approach is robust to measurement noise and system uncertainties. Its effectiveness is demonstrated through numerical simulations of sensor faults in a network of Kuramoto oscillators.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here