Service Reservation and Pricing for Green Metaverses: A Stackelberg Game Approach

9 Aug 2023  ·  Xumin Huang, Yuan Wu, Jiawen Kang, Jiangtian Nie, Weifeng Zhong, Dong In Kim, Shengli Xie ·

Metaverse enables users to communicate, collaborate and socialize with each other through their digital avatars. Due to the spatio-temporal characteristics, co-located users are served well by performing their software components in a collaborative manner such that a Metaverse service provider (MSP) eliminates redundant data transmission and processing, ultimately reducing the total energy consumption. The energyefficient service provision is crucial for enabling the green and sustainable Metaverse. In this article, we take an augmented reality (AR) application as an example to achieve this goal. Moreover, we study an economic issue on how the users reserve offloading services from the MSP and how the MSP determines an optimal charging price since each user is rational to decide whether to accept the offloading service by taking into account the monetary cost. A single-leader multi-follower Stackelberg game is formulated between the MSP and users while each user optimizes an offloading probability to minimize the weighted sum of time, energy consumption and monetary cost. Numerical results show that our scheme achieves energy savings and satisfies individual rationality simultaneously compared with the conventional schemes. Finally, we identify and discuss open directions on how several emerging technologies are combined with the sustainable green Metaverse.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here