Shearlet-based compressed sensing for fast 3D cardiac MR imaging using iterative reweighting

High-resolution three-dimensional (3D) cardiovascular magnetic resonance (CMR) is a valuable medical imaging technique, but its widespread application in clinical practice is hampered by long acquisition times. Here we present a novel compressed sensing (CS) reconstruction approach using shearlets as a sparsifying transform allowing for fast 3D CMR (3DShearCS). Shearlets are mathematically optimal for a simplified model of natural images and have been proven to be more efficient than classical systems such as wavelets. Data is acquired with a 3D Radial Phase Encoding (RPE) trajectory and an iterative reweighting scheme is used during image reconstruction to ensure fast convergence and high image quality. In our in-vivo cardiac MRI experiments we show that the proposed method 3DShearCS has lower relative errors and higher structural similarity compared to the other reconstruction techniques especially for high undersampling factors, i.e. short scan times. In this paper, we further show that 3DShearCS provides improved depiction of cardiac anatomy (measured by assessing the sharpness of coronary arteries) and two clinical experts qualitatively analyzed the image quality.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here