Short utterance compensation in speaker verification via cosine-based teacher-student learning of speaker embeddings

25 Oct 2018  ·  Jee-weon Jung, Hee-Soo Heo, Hye-jin Shim, Ha-Jin Yu ·

The short duration of an input utterance is one of the most critical threats that degrade the performance of speaker verification systems. This study aimed to develop an integrated text-independent speaker verification system that inputs utterances with short duration of 2 seconds or less. We propose an approach using a teacher-student learning framework for this goal, applied to short utterance compensation for the first time in our knowledge. The core concept of the proposed system is to conduct the compensation throughout the network that extracts the speaker embedding, mainly in phonetic-level, rather than compensating via a separate system after extracting the speaker embedding. In the proposed architecture, phonetic-level features where each feature represents a segment of 130 ms are extracted using convolutional layers. A layer of gated recurrent units extracts an utterance-level feature using phonetic-level features. The proposed approach also adopts a new objective function for teacher-student learning that considers both Kullback-Leibler divergence of output layers and cosine distance of speaker embeddings layers. Experiments were conducted using deep neural networks that take raw waveforms as input, and output speaker embeddings on VoxCeleb1 dataset. The proposed model could compensate approximately 65 \% of the performance degradation due to the shortened duration.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here