Simulated+Unsupervised Learning With Adaptive Data Generation and Bidirectional Mappings

ICLR 2018  ·  Kangwook Lee, Hoon Kim, Changho Suh ·

Collecting a large dataset with high quality annotations is expensive and time-consuming. Recently, Shrivastava et al. (2017) propose Simulated+Unsupervised (S+U) learning: It first learns a mapping from synthetic data to real data, translates a large amount of labeled synthetic data to the ones that resemble real data, and then trains a learning model on the translated data. Bousmalis et al. (2017) propose a similar framework that jointly trains a translation mapping and a learning model. While these algorithms are shown to achieve the state-of-the-art performances on various tasks, it may have a room for improvement, as they do not fully leverage flexibility of data simulation process and consider only the forward (synthetic to real) mapping. While these algorithms are shown to achieve the state-of-the-art performances on various tasks, it may have a room for improvement, as it does not fully leverage flexibility of data simulation process and consider only the forward (synthetic to real) mapping. Inspired by this limitation, we propose a new S+U learning algorithm, which fully leverage the flexibility of data simulators and bidirectional mappings between synthetic data and real data. We show that our approach achieves the improved performance on the gaze estimation task, outperforming (Shrivastava et al., 2017).

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here