Simulation-based Bayesian inference for robotic grasping

10 Mar 2023  ·  Norman Marlier, Olivier Brüls, Gilles Louppe ·

General robotic grippers are challenging to control because of their rich nonsmooth contact dynamics and the many sources of uncertainties due to the environment or sensor noise. In this work, we demonstrate how to compute 6-DoF grasp poses using simulation-based Bayesian inference through the full stochastic forward simulation of the robot in its environment while robustly accounting for many of the uncertainties in the system. A Riemannian manifold optimization procedure preserving the nonlinearity of the rotation space is used to compute the maximum a posteriori grasp pose. Simulation and physical benchmarks show the promising high success rate of the approach.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here