Single-Cell RNA-seq Synthesis with Latent Diffusion Model

21 Dec 2023  ·  YiXuan Wang, Shuangyin Li, Shimin Di, Lei Chen ·

The single-cell RNA sequencing (scRNA-seq) technology enables researchers to study complex biological systems and diseases with high resolution. The central challenge is synthesizing enough scRNA-seq samples; insufficient samples can impede downstream analysis and reproducibility. While various methods have been attempted in past research, the resulting scRNA-seq samples were often of poor quality or limited in terms of useful specific cell subpopulations. To address these issues, we propose a novel method called Single-Cell Latent Diffusion (SCLD) based on the Diffusion Model. This method is capable of synthesizing large-scale, high-quality scRNA-seq samples, including both 'holistic' or targeted specific cellular subpopulations within a unified framework. A pre-guidance mechanism is designed for synthesizing specific cellular subpopulations, while a post-guidance mechanism aims to enhance the quality of scRNA-seq samples. The SCLD can synthesize large-scale and high-quality scRNA-seq samples for various downstream tasks. Our experimental results demonstrate state-of-the-art performance in cell classification and data distribution distances when evaluated on two scRNA-seq benchmarks. Additionally, visualization experiments show the SCLD's capability in synthesizing specific cellular subpopulations.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods