Social Diffusion: Long-term Multiple Human Motion Anticipation

We propose Social Diffusion, a novel method for short-term and long-term forecasting of the motion of multiple persons as well as their social interactions. Jointly forecasting motions for multiple persons involved in social activities is inherently a challenging problem due to the interdependencies between individuals. In this work, we leverage a diffusion model conditioned on motion histories and causal temporal convolutional networks to forecast individually and contextually plausible motions for all participants. The contextual plausibility is achieved via an order-invariant aggregation function. As a second contribution, we design a new evaluation protocol that measures the plausibility of social interactions which we evaluate on the Haggling dataset, which features a challenging social activity where people are actively taking turns to talk and switching their attention. We evaluate our approach on four datasets for multi-person forecasting where our approach outperforms the state-of-the-art in terms of motion realism and contextual plausibility.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods