SpanAlign: Sentence Alignment Method based on Cross-Language Span Prediction and ILP

We propose a novel method of automatic sentence alignment from noisy parallel documents. We first formalize the sentence alignment problem as the independent predictions of spans in the target document from sentences in the source document. We then introduce a total optimization method using integer linear programming to prevent span overlapping and obtain non-monotonic alignments. We implement cross-language span prediction by fine-tuning pre-trained multilingual language models based on BERT architecture and train them using pseudo-labeled data obtained from unsupervised sentence alignment method. While the baseline methods use sentence embeddings and assume monotonic alignment, our method can capture the token-to-token interaction between the tokens of source and target text and handle non-monotonic alignments. In sentence alignment experiments on English-Japanese, our method achieved 70.3 F1 scores, which are +8.0 points higher than the baseline method. In particular, our method improved by +53.9 F1 scores for extracting non-parallel sentences. Our method improved the downstream machine translation accuracy by 4.1 BLEU scores when the extracted bilingual sentences are used for fine-tuning a pre-trained Japanese-to-English translation model.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.