Spatial-Aware Image Retrieval: A Hyperdimensional Computing Approach for Efficient Similarity Hashing

17 Apr 2024  ·  Sanggeon Yun, Ryozo Masukawa, Sungheon Jeong, Mohsen Imani ·

In the face of burgeoning image data, efficiently retrieving similar images poses a formidable challenge. Past research has focused on refining hash functions to distill images into compact indicators of resemblance. Initial attempts used shallow models, evolving to attention mechanism-based architectures from Convolutional Neural Networks (CNNs) to advanced models. Recognizing limitations in gradient-based models for spatial information embedding, we propose an innovative image hashing method, NeuroHash leveraging Hyperdimensional Computing (HDC). HDC symbolically encodes spatial information into high-dimensional vectors, reshaping image representation. Our approach combines pre-trained large vision models with HDC operations, enabling spatially encoded feature representations. Hashing with locality-sensitive hashing (LSH) ensures swift and efficient image retrieval. Notably, our framework allows dynamic hash manipulation for conditional image retrieval. Our work introduces a transformative image hashing framework enabling spatial-aware conditional retrieval. By seamlessly combining DNN-based neural and HDC-based symbolic models, our methodology breaks from traditional training, offering flexible and conditional image retrieval. Performance evaluations signify a paradigm shift in image-hashing methodologies, demonstrating enhanced retrieval accuracy.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here