Speaker Diarization With Lexical Information

27 Nov 2018  ·  Tae Jin Park, Kyu Han, Ian Lane, Panayiotis Georgiou ·

This work presents a novel approach to leverage lexical information for speaker diarization. We introduce a speaker diarization system that can directly integrate lexical as well as acoustic information into a speaker clustering process. Thus, we propose an adjacency matrix integration technique to integrate word level speaker turn probabilities with speaker embeddings in a comprehensive way. Our proposed method works without any reference transcript. Words, and word boundary information are provided by an ASR system. We show that our proposed method improves a baseline speaker diarization system solely based on speaker embeddings, achieving a meaningful improvement on the CALLHOME American English Speech dataset.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here