Speed-Constrained Tuning for Statistical Machine Translation Using Bayesian Optimization

We address the problem of automatically finding the parameters of a statistical machine translation system that maximize BLEU scores while ensuring that decoding speed exceeds a minimum value. We propose the use of Bayesian Optimization to efficiently tune the speed-related decoding parameters by easily incorporating speed as a noisy constraint function. The obtained parameter values are guaranteed to satisfy the speed constraint with an associated confidence margin. Across three language pairs and two speed constraint values, we report overall optimization time reduction compared to grid and random search. We also show that Bayesian Optimization can decouple speed and BLEU measurements, resulting in a further reduction of overall optimization time as speed is measured over a small subset of sentences.

PDF Abstract NAACL 2016 PDF NAACL 2016 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods