Speeding Up Neural Machine Translation Decoding by Cube Pruning

EMNLP 2018  ·  Wen Zhang, Liang Huang, Yang Feng, Lei Shen, Qun Liu ·

Although neural machine translation has achieved promising results, it suffers from slow translation speed. The direct consequence is that a trade-off has to be made between translation quality and speed, thus its performance can not come into full play. We apply cube pruning, a popular technique to speed up dynamic programming, into neural machine translation to speed up the translation. To construct the equivalence class, similar target hidden states are combined, leading to less RNN expansion operations on the target side and less \$\mathrm{softmax}\$ operations over the large target vocabulary. The experiments show that, at the same or even better translation quality, our method can translate faster compared with naive beam search by \$3.3\times\$ on GPUs and \$3.5\times\$ on CPUs.

PDF Abstract EMNLP 2018 PDF EMNLP 2018 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods