SSGCNet: A Sparse Spectra Graph Convolutional Network for Epileptic EEG Signal Classification

24 Mar 2022  ·  Jialin Wang, Rui Gao, Haotian Zheng, Hao Zhu, C. -J. Richard Shi ·

In this article, we propose a sparse spectra graph convolutional network (SSGCNet) for solving Epileptic EEG signal classification problems. The aim is to achieve a lightweight deep learning model without losing model classification accuracy. We propose a weighted neighborhood field graph (WNFG) to represent EEG signals, which reduces the redundant edges between graph nodes. WNFG has lower time complexity and memory usage than the conventional solutions. Using the graph representation, the sequential graph convolutional network is based on a combination of sparse weight pruning technique and the alternating direction method of multipliers (ADMM). Our approach can reduce computation complexity without effect on classification accuracy. We also present convergence results for the proposed approach. The performance of the approach is illustrated in public and clinical-real datasets. Compared with the existing literature, our WNFG of EEG signals achieves up to 10 times of redundant edge reduction, and our approach achieves up to 97 times of model pruning without loss of classification accuracy.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods