Stability and Generalization for Minibatch SGD and Local SGD

2 Oct 2023  ·  Yunwen Lei, Tao Sun, Mingrui Liu ·

The increasing scale of data propels the popularity of leveraging parallelism to speed up the optimization. Minibatch stochastic gradient descent (minibatch SGD) and local SGD are two popular methods for parallel optimization. The existing theoretical studies show a linear speedup of these methods with respect to the number of machines, which, however, is measured by optimization errors. As a comparison, the stability and generalization of these methods are much less studied. In this paper, we study the stability and generalization analysis of minibatch and local SGD to understand their learnability by introducing a novel expectation-variance decomposition. We incorporate training errors into the stability analysis, which shows how small training errors help generalization for overparameterized models. We show both minibatch and local SGD achieve a linear speedup to attain the optimal risk bounds.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods