Statistical Learnability of Generalized Additive Models based on Total Variation Regularization

8 Feb 2018  ·  Shin Matsushima ·

A generalized additive model (GAM, Hastie and Tibshirani (1987)) is a nonparametric model by the sum of univariate functions with respect to each explanatory variable, i.e., $f({\mathbf x}) = \sum f_j(x_j)$, where $x_j\in\mathbb{R}$ is $j$-th component of a sample ${\mathbf x}\in \mathbb{R}^p$. In this paper, we introduce the total variation (TV) of a function as a measure of the complexity of functions in $L^1_{\rm c}(\mathbb{R})$-space... Our analysis shows that a GAM based on TV-regularization exhibits a Rademacher complexity of $O(\sqrt{\frac{\log p}{m}})$, which is tight in terms of both $m$ and $p$ in the agnostic case of the classification problem. In result, we obtain generalization error bounds for finite samples according to work by Bartlett and Mandelson (2002). read more

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here