Statistical Learnability of Generalized Additive Models based on Total Variation Regularization

8 Feb 2018Shin Matsushima

A generalized additive model (GAM, Hastie and Tibshirani (1987)) is a nonparametric model by the sum of univariate functions with respect to each explanatory variable, i.e., $f({\mathbf x}) = \sum f_j(x_j)$, where $x_j\in\mathbb{R}$ is $j$-th component of a sample ${\mathbf x}\in \mathbb{R}^p$. In this paper, we introduce the total variation (TV) of a function as a measure of the complexity of functions in $L^1_{\rm c}(\mathbb{R})$-space... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet