Steerable Wavelet Scattering for 3D Atomic Systems with Application to Li-Si Energy Prediction

21 Nov 2018  ·  Xavier Brumwell, Paul Sinz, Kwang Jin Kim, Yue Qi, Matthew Hirn ·

A general machine learning architecture is introduced that uses wavelet scattering coefficients of an inputted three dimensional signal as features. Solid harmonic wavelet scattering transforms of three dimensional signals were previously introduced in a machine learning framework for the regression of properties of small organic molecules. Here this approach is extended for general steerable wavelets which are equivariant to translations and rotations, resulting in a sparse model of the target function. The scattering coefficients inherit from the wavelets invariance to translations and rotations. As an illustration of this approach a linear regression model is learned for the formation energy of amorphous lithium-silicon material states trained over a database generated using plane-wave Density Functional Theory methods. State-of-the-art results are produced as compared to other machine learning approaches over similarly generated databases.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods