Step-GRAND: A Low Latency Universal Soft-input Decoder

14 Jul 2023  ·  Syed Mohsin Abbas, Marwan Jalaleddine, Chi-Ying Tsui, Warren J. Gross ·

GRAND features both soft-input and hard-input variants that are well suited to efficient hardware implementations that can be characterized with achievable average and worst-case decoding latency. This paper introduces step-GRAND, a soft-input variant of GRAND that, in addition to achieving appealing average decoding latency, also reduces the worst-case decoding latency of the corresponding hardware implementation. The hardware implementation results demonstrate that the proposed step-GRAND can decode CA-polar code $(128,105+11)$ with an average information throughput of $47.7$ Gbps at the target FER of $\leq10^{-7}$. Furthermore, the proposed step-GRAND hardware is $10\times$ more area efficient than the previous soft-input ORBGRAND hardware implementation, and its worst-case latency is $\frac{1}{6.8}\times$ that of the previous ORBGRAND hardware.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here