Stereo Computation for a Single Mixture Image

ECCV 2018  ·  Yiran Zhong, Yuchao Dai, Hongdong Li ·

This paper proposes an original problem of \emph{stereo computation from a single mixture image}-- a challenging problem that had not been researched before. The goal is to separate (\ie, unmix) a single mixture image into two constitute image layers, such that the two layers form a left-right stereo image pair, from which a valid disparity map can be recovered. This is a severely illposed problem, from one input image one effectively aims to recover three (\ie, left image, right image and a disparity map). In this work we give a novel deep-learning based solution, by jointly solving the two subtasks of image layer separation as well as stereo matching. Training our deep net is a simple task, as it does not need to have disparity maps. Extensive experiments demonstrate the efficacy of our method.

PDF Abstract ECCV 2018 PDF ECCV 2018 Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here