Street to Cloud: Improving Flood Maps With Crowdsourcing and Semantic Segmentation

5 Nov 2020  ·  Veda Sunkara, Matthew Purri, Bertrand Le Saux, Jennifer Adams ·

To address the mounting destruction caused by floods in climate-vulnerable regions, we propose Street to Cloud, a machine learning pipeline for incorporating crowdsourced ground truth data into the segmentation of satellite imagery of floods. We propose this approach as a solution to the labor-intensive task of generating high-quality, hand-labeled training data, and demonstrate successes and failures of different plausible crowdsourcing approaches in our model. Street to Cloud leverages community reporting and machine learning to generate novel, near-real time insights into the extent of floods to be used for emergency response.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here