Stylized Data-to-Text Generation: A Case Study in the E-Commerce Domain

5 May 2023  ·  Liqiang Jing, Xuemeng Song, Xuming Lin, Zhongzhou Zhao, Wei Zhou, Liqiang Nie ·

Existing data-to-text generation efforts mainly focus on generating a coherent text from non-linguistic input data, such as tables and attribute-value pairs, but overlook that different application scenarios may require texts of different styles. Inspired by this, we define a new task, namely stylized data-to-text generation, whose aim is to generate coherent text for the given non-linguistic data according to a specific style. This task is non-trivial, due to three challenges: the logic of the generated text, unstructured style reference, and biased training samples. To address these challenges, we propose a novel stylized data-to-text generation model, named StyleD2T, comprising three components: logic planning-enhanced data embedding, mask-based style embedding, and unbiased stylized text generation. In the first component, we introduce a graph-guided logic planner for attribute organization to ensure the logic of generated text. In the second component, we devise feature-level mask-based style embedding to extract the essential style signal from the given unstructured style reference. In the last one, pseudo triplet augmentation is utilized to achieve unbiased text generation, and a multi-condition based confidence assignment function is designed to ensure the quality of pseudo samples. Extensive experiments on a newly collected dataset from Taobao have been conducted, and the results show the superiority of our model over existing methods.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here