Synthesizing Speech from Intracranial Depth Electrodes using an Encoder-Decoder Framework

Speech Neuroprostheses have the potential to enable communication for people with dysarthria or anarthria. Recent advances have demonstrated high-quality text decoding and speech synthesis from electrocorticographic grids placed on the cortical surface. Here, we investigate a less invasive measurement modality in three participants, namely stereotactic EEG (sEEG) that provides sparse sampling from multiple brain regions, including subcortical regions. To evaluate whether sEEG can also be used to synthesize audio from neural recordings, we employ a recurrent encoder-decoder model based on modern deep learning methods. We find that speech can indeed be reconstructed with correlations up to 0.8 from these minimally invasive recordings, despite limited amounts of training data. In particular, the architecture we employ naturally picks up on the temporal nature of the data and thereby outperforms an existing benchmark based on non-regressive convolutional neural networks.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods