TableBank: A Benchmark Dataset for Table Detection and Recognition

We present TableBank, a new image-based table detection and recognition dataset built with novel weak supervision from Word and Latex documents on the internet. Existing research for image-based table detection and recognition usually fine-tunes pre-trained models on out-of-domain data with a few thousand human-labeled examples, which is difficult to generalize on real-world applications... With TableBank that contains 417K high quality labeled tables, we build several strong baselines using state-of-the-art models with deep neural networks. We make TableBank publicly available and hope it will empower more deep learning approaches in the table detection and recognition task. The dataset and models are available at \url{https://github.com/doc-analysis/TableBank}. read more

PDF Abstract

Datasets


Introduced in the Paper:

TableBank

Used in the Paper:

COCO

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here