Target Detection and Segmentation in Circular-Scan Synthetic-Aperture-Sonar Images using Semi-Supervised Convolutional Encoder-Decoders

We propose a framework for saliency-based, multi-target detection and segmentation of circular-scan, synthetic-aperture-sonar (CSAS) imagery. Our framework relies on a multi-branch, convolutional encoder-decoder network (MB-CEDN). The encoder portion of the MB-CEDN extracts visual contrast features from CSAS images. These features are fed into dual decoders that perform pixel-level segmentation to mask targets. Each decoder provides different perspectives as to what constitutes a salient target. These opinions are aggregated and cascaded into a deep-parsing network to refine the segmentation. We evaluate our framework using real-world CSAS imagery consisting of five broad target classes. We compare against existing approaches from the computer-vision literature. We show that our framework outperforms supervised, deep-saliency networks designed for natural imagery. It greatly outperforms unsupervised saliency approaches developed for natural imagery. This illustrates that natural-image-based models may need to be altered to be effective for this imaging-sonar modality.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here