Thank you BART! Rewarding Pre-Trained Models Improves Formality Style Transfer

ACL 2021  ·  Huiyuan Lai, Antonio Toral, Malvina Nissim ·

Scarcity of parallel data causes formality style transfer models to have scarce success in preserving content. We show that fine-tuning pre-trained language (GPT-2) and sequence-to-sequence (BART) models boosts content preservation, and that this is possible even with limited amounts of parallel data. Augmenting these models with rewards that target style and content -- the two core aspects of the task -- we achieve a new state-of-the-art.

PDF Abstract ACL 2021 PDF ACL 2021 Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here