The Blessing and the Curse of the Noise behind Facial Landmark Annotations

30 Jul 2020  ·  Xiaoyu Xiang, Yang Cheng, Shaoyuan Xu, Qian Lin, Jan Allebach ·

The evolving algorithms for 2D facial landmark detection empower people to recognize faces, analyze facial expressions, etc. However, existing methods still encounter problems of unstable facial landmarks when applied to videos... Because previous research shows that the instability of facial landmarks is caused by the inconsistency of labeling quality among the public datasets, we want to have a better understanding of the influence of annotation noise in them. In this paper, we make the following contributions: 1) we propose two metrics that quantitatively measure the stability of detected facial landmarks, 2) we model the annotation noise in an existing public dataset, 3) we investigate the influence of different types of noise in training face alignment neural networks, and propose corresponding solutions. Our results demonstrate improvements in both accuracy and stability of detected facial landmarks. read more

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here