The Fine-Grained Hardness of Sparse Linear Regression

6 Jun 2021  ·  Aparna Gupte, Vinod Vaikuntanathan ·

Sparse linear regression is the well-studied inference problem where one is given a design matrix $\mathbf{A} \in \mathbb{R}^{M\times N}$ and a response vector $\mathbf{b} \in \mathbb{R}^M$, and the goal is to find a solution $\mathbf{x} \in \mathbb{R}^{N}$ which is $k$-sparse (that is, it has at most $k$ non-zero coordinates) and minimizes the prediction error $\|\mathbf{A} \mathbf{x} - \mathbf{b}\|_2$. On the one hand, the problem is known to be $\mathcal{NP}$-hard which tells us that no polynomial-time algorithm exists unless $\mathcal{P} = \mathcal{NP}$. On the other hand, the best known algorithms for the problem do a brute-force search among $N^k$ possibilities. In this work, we show that there are no better-than-brute-force algorithms, assuming any one of a variety of popular conjectures including the weighted $k$-clique conjecture from the area of fine-grained complexity, or the hardness of the closest vector problem from the geometry of numbers. We also show the impossibility of better-than-brute-force algorithms when the prediction error is measured in other $\ell_p$ norms, assuming the strong exponential-time hypothesis.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods