The GPU Phase Folding and Deep Learning Method for Detecting Exoplanet Transits

4 Dec 2023  ·  Kaitlyn Wang, Jian Ge, Kevin Willis, Kevin Wang, Yinan Zhao ·

This paper presents GPFC, a novel Graphics Processing Unit (GPU) Phase Folding and Convolutional Neural Network (CNN) system to detect exoplanets using the transit method. We devise a fast folding algorithm parallelized on a GPU to amplify low signal-to-noise ratio transit signals, allowing a search at high precision and speed. A CNN trained on two million synthetic light curves reports a score indicating the likelihood of a planetary signal at each period. While the GPFC method has broad applicability across period ranges, this research specifically focuses on detecting ultra-short-period planets with orbital periods less than one day. GPFC improves on speed by three orders of magnitude over the predominant Box-fitting Least Squares (BLS) method. Our simulation results show GPFC achieves $97%$ training accuracy, higher true positive rate at the same false positive rate of detection, and higher precision at the same recall rate when compared to BLS. GPFC recovers $100\%$ of known ultra-short-period planets in $\textit{Kepler}$ light curves from a blind search. These results highlight the promise of GPFC as an alternative approach to the traditional BLS algorithm for finding new transiting exoplanets in data taken with $\textit{Kepler}$ and other space transit missions such as K2, TESS and future PLATO and Earth 2.0.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods