The HW-TSC’s Offline Speech Translation System for IWSLT 2022 Evaluation

This paper describes the HW-TSC’s designation of the Offline Speech Translation System submitted for IWSLT 2022 Evaluation. We explored both cascade and end-to-end system on three language tracks (en-de, en-zh and en-ja), and we chose the cascade one as our primary submission. For the automatic speech recognition (ASR) model of cascade system, there are three ASR models including Conformer, S2T-Transformer and U2 trained on the mixture of five datasets. During inference, transcripts are generated with the help of domain controlled generation strategy. Context-aware reranking and ensemble based anti-interference strategy are proposed to produce better ASR outputs. For machine translation part, we pretrained three translation models on WMT21 dataset and fine-tuned them on in-domain corpora. Our cascade system shows competitive performance than the known offline systems in the industry and academia.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here