We explore the ability of word embeddings to capture both semantic and morphological similarity, as affected by the different types of linguistic properties (surface form, lemma, morphological tag) used to compose the representation of each word. We train several models, where each uses a different subset of these properties to compose its representations... (read more)
PDF Abstract EACL 2017 PDF EACL 2017 AbstractMETHOD | TYPE | |
---|---|---|
🤖 No Methods Found | Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet |