The Local Approach to Causal Inference under Network Interference

9 May 2021  ·  Eric Auerbach, Max Tabord-Meehan ·

We propose a new nonparametric modeling framework for causal inference when outcomes depend on how agents are linked in a social or economic network. Such network interference describes a large literature on treatment spillovers, social interactions, social learning, information diffusion, disease and financial contagion, social capital formation, and more. Our approach works by first characterizing how an agent is linked in the network using the configuration of other agents and connections nearby as measured by path distance. The impact of a policy or treatment assignment is then learned by pooling outcome data across similarly configured agents. We demonstrate the approach by proposing an asymptotically valid test for the hypothesis of policy irrelevance/no treatment effects and bounding the mean-squared error of a k-nearest-neighbor estimator for the average or distributional policy effect/treatment response.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here