The Physical Systems Behind Optimization Algorithms

We use differential equations based approaches to provide some {\it \textbf{physics}} insights into analyzing the dynamics of popular optimization algorithms in machine learning. In particular, we study gradient descent, proximal gradient descent, coordinate gradient descent, proximal coordinate gradient, and Newton's methods as well as their Nesterov's accelerated variants in a unified framework motivated by a natural connection of optimization algorithms to physical systems... (read more)

PDF Abstract NeurIPS 2018 PDF NeurIPS 2018 Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet