The Physical Systems Behind Optimization Algorithms

NeurIPS 2018  ·  Lin F. Yang, R. Arora, V. Braverman, Tuo Zhao ·

We use differential equations based approaches to provide some {\it \textbf{physics}} insights into analyzing the dynamics of popular optimization algorithms in machine learning. In particular, we study gradient descent, proximal gradient descent, coordinate gradient descent, proximal coordinate gradient, and Newton's methods as well as their Nesterov's accelerated variants in a unified framework motivated by a natural connection of optimization algorithms to physical systems. Our analysis is applicable to more general algorithms and optimization problems {\it \textbf{beyond}} convexity and strong convexity, e.g. Polyak-\L ojasiewicz and error bound conditions (possibly nonconvex).

PDF Abstract NeurIPS 2018 PDF NeurIPS 2018 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here