The Use of Parallel and Comparable Data for Analysis of Abstract Anaphora in German and English

Parallel corpora ― original texts aligned with their translations ― are a widely used resource in computational linguistics. Translation studies have shown that translated texts often differ systematically from comparable original texts. Translators tend to be faithful to structures of the original texts, resulting in a ''''''``shining through'''''''' of the original language preferences in the translated text. Translators also tend to make their translations most comprehensible with the effect that translated texts can be more explicit than their source texts. Motivated by the need to use a parallel resource for cross-linguistic feature induction in abstract anaphora resolution, this paper investigates properties of English and German texts in the Europarl corpus, taking into account both general features such as sentence length as well as task-dependent features such as the distribution of demonstrative noun phrases. The investigation is based on the entire Europarl corpus as well as on a small subset thereof, which has been manually annotated. The results indicate English translated texts are sufficiently ''''''``authentic'''''''' to be used as training data for anaphora resolution; results for German texts are less conclusive, though.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here