TJCCT: A Two-timescale Approach for UAV-assisted Mobile Edge Computing

Unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) is emerging as a promising paradigm to provide aerial-terrestrial computing services in close proximity to mobile devices (MDs). However, meeting the demands of computation-intensive and delay-sensitive tasks for MDs poses several challenges, including the demand-supply contradiction between MDs and MEC servers, the demand-supply heterogeneity between MDs and MEC servers, the trajectory control requirements on energy efficiency and timeliness, and the different time-scale dynamics of the network. To address these issues, we first present a hierarchical architecture by incorporating terrestrial-aerial computing capabilities and leveraging UAV flexibility. Furthermore, we formulate a joint computing resource allocation, computation offloading, and trajectory control problem to maximize the system utility. Since the problem is a non-convex and NP-hard mixed integer nonlinear programming (MINLP), we propose a two-timescale joint computing resource allocation, computation offloading, and trajectory control (TJCCT) approach for solving the problem. In the short timescale, we propose a price-incentive model for on-demand computing resource allocation and a matching mechanism-based method for computation offloading. In the long timescale, we propose a convex optimization-based method for UAV trajectory control. Besides, we theoretically prove the stability, optimality, and polynomial complexity of TJCCT. Extended simulation results demonstrate that the proposed TJCCT outperforms the comparative algorithms in terms of the system utility, average processing rate, average completion delay, and average completion ratio.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here