Topic subject creation using unsupervised learning for topic modeling

18 Dec 2019Rashid MehdiyevJean NavaKaran SodhiSaurav AcharyaAnnie Ibrahim Rana

We describe the use of Non-Negative Matrix Factorization (NMF) and Latent Dirichlet Allocation (LDA) algorithms to perform topic mining and labelling applied to retail customer communications in attempt to characterize the subject of customers inquiries. In this paper we compare both algorithms in the topic mining performance and propose methods to assign topic subject labels in an automated way...

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet