Total stability and integral action for discrete-time nonlinear systems

7 Oct 2022  ·  Samuele Zoboli, Daniele Astolfi, Vincent Andrieu ·

Robustness guarantees are important properties to be looked for during control design. They ensure stability of closed-loop systems in face of uncertainties, unmodeled effects and bounded disturbances. While the theory on robust stability is well established in the continuous-time nonlinear framework, the same cannot be stated for its discrete-time counterpart. In this paper, we propose the discrete-time parallel of total stability results for continuous-time nonlinear system. This enables the analysis of robustness properties via simple model difference in the discrete-time context. First, we study how existence of equilibria for a nominal model transfers to sufficiently similar ones. Then, we provide results on the

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here