Toward Generative Data Augmentation for Traffic Classification

21 Oct 2023  ·  Chao Wang, Alessandro Finamore, Pietro Michiardi, Massimo Gallo, Dario Rossi ·

Data Augmentation (DA)-augmenting training data with synthetic samples-is wildly adopted in Computer Vision (CV) to improve models performance. Conversely, DA has not been yet popularized in networking use cases, including Traffic Classification (TC). In this work, we present a preliminary study of 14 hand-crafted DAs applied on the MIRAGE19 dataset. Our results (i) show that DA can reap benefits previously unexplored in TC and (ii) foster a research agenda on the use of generative models to automate DA design.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here