Towards a Skeleton-Based Action Recognition For Realistic Scenarios
Understanding human actions is a crucial problem for service robots. However, the general trend in Action Recognition is developing and testing these systems on structured datasets. That's why this work presents a practical Skeleton-based Action Recognition framework which can be used in realistic scenarios. Our results show that although non-augmented and non-normalized data may yield comparable results on the test split of the dataset, it is far from being useful on another dataset which is a manually collected data.
PDF AbstractDatasets
Add Datasets
introduced or used in this paper
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here