Reconstructing Actions To Explain Deep Reinforcement Learning

17 Sep 2020  ·  Xuan Chen, Zifan Wang, Yucai Fan, Bonan Jin, Piotr Mardziel, Carlee Joe-Wong, Anupam Datta ·

Feature attribution has been a foundational building block for explaining the input feature importance in supervised learning with Deep Neural Network (DNNs), but face new challenges when applied to deep Reinforcement Learning (RL).We propose a new approach to explaining deep RL actions by defining a class of \emph{action reconstruction} functions that mimic the behavior of a network in deep RL. This approach allows us to answer more complex explainability questions than direct application of DNN attribution methods, which we adapt to \emph{behavior-level attributions} in building our action reconstructions. It also allows us to define \emph{agreement}, a metric for quantitatively evaluating the explainability of our methods. Our experiments on a variety of Atari games suggest that perturbation-based attribution methods are significantly more suitable in reconstructing actions to explain the deep RL agent than alternative attribution methods, and show greater \emph{agreement} than existing explainability work utilizing attention. We further show that action reconstruction allows us to demonstrate how a deep agent learns to play Pac-Man game.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here