Tracking Partially-Occluded Deformable Objects while Enforcing Geometric Constraints

1 Nov 2020  ·  YiXuan Wang, Dale McConachie, Dmitry Berenson ·

In order to manipulate a deformable object, such as rope or cloth, in unstructured environments, robots need a way to estimate its current shape. However, tracking the shape of a deformable object can be challenging because of the object's high flexibility, (self-)occlusion, and interaction with obstacles. Building a high-fidelity physics simulation to aid in tracking is difficult for novel environments. Instead we focus on tracking the object based on RGBD images and geometric motion estimates and obstacles. Our key contributions over previous work in this vein are: 1) A better way to handle severe occlusion by using a motion model to regularize the tracking estimate; and 2) The formulation of \textit{convex} geometric constraints, which allow us to prevent self-intersection and penetration into known obstacles via a post-processing step. These contributions allow us to outperform previous methods by a large margin in terms of accuracy in scenarios with severe occlusion and obstacles.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here