Training generative models from privatized data

15 Jun 2023  ·  Daria Reshetova, Wei-Ning Chen, Ayfer Özgür ·

Local differential privacy is a powerful method for privacy-preserving data collection. In this paper, we develop a framework for training Generative Adversarial Networks (GANs) on differentially privatized data. We show that entropic regularization of optimal transport - a popular regularization method in the literature that has often been leveraged for its computational benefits - enables the generator to learn the raw (unprivatized) data distribution even though it only has access to privatized samples. We prove that at the same time this leads to fast statistical convergence at the parametric rate. This shows that entropic regularization of optimal transport uniquely enables the mitigation of both the effects of privatization noise and the curse of dimensionality in statistical convergence. We provide experimental evidence to support the efficacy of our framework in practice.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here