Transactive Local Energy Markets Enable Community-Level Resource Coordination Using Individual Rewards

22 Mar 2024  ·  Daniel C. May, Petr Musilek ·

ALEX (Autonomous Local Energy eXchange) is an economy-driven, transactive local energy market where each participating building is represented by a rational agent. Relying solely on building-level information, this agent minimizes its electricity bill by automating distributed energy resource utilization and trading. This study examines ALEX's capabilities to align participant and grid-stakeholder interests and assesses ALEX's impact on short- and long-term intermittence using a set of community net-load metrics, such as ramping rate, load factor, and peak load. The policies for ALEX's rational agents are generated using dynamic programming through value iteration in conjunction with iterative best response. This facilitates comparing ALEX and a benchmark energy management system, which optimizes building-level self-consumption, ramping rate, and peak net load. Simulations are performed using the open-source CityLearn2022 dataset to provide a pathway for benchmarking by future studies. The experiments demonstrate that ALEX enables the coordination of distributed energy resources across the community. Remarkably, this community-level coordination occurs even though the system is populated by agents who only access building-level information and selfishly maximize their own relative profit. Compared to the benchmark energy management system, ALEX improves across all metrics.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods